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Nucleation of optically excited solitons and breathers in
trans-polyacetylene
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Max-Planck-Arbeitsgruppe ‘Halbleitertheorie’, Hausvogteiplatz 5-7, D-10117 Berlin, Germany

Received 12 October 1995

Abstract. Solitons and breathers are well known self-localized stable excitations intrans-
polyacetylene. Here we discuss numerically the optical excitation of soliton pairs and breathers
in trans-polyacetylene by short (30 fs) and resonant (¯hω = 2.0 eV) laser pulses. In a perfect
uniform chain the formation of self-localized excitations is suppressed by the decay into extended
excitations like optical phonons even if the chain has absorbed sufficient energy. A small change
of the Hamiltonian at one monomer and very small fluctuations of bond lengths may serve to
create nucleation centres, which aid the formation of spatially localized excitations. We present
soliton pairs and breathers directly created by the electric field of a laser pulse within the dipole
approximation and mean-field theory for the electron–phonon coupling. The time development
of the π -electron system is solved in the framework of the single-particle Schrödinger equation
with the SSH Hamiltonian. We neglect the Coulomb interaction of theπ -electrons.

1. Introduction

Even though the existence of charged solitons in dopedtrans-polyacetylene (TPA) is well
accepted [1] there are still some open questions concerning the creation of solitons on optical
excitation across the Peierls gap in undoped TPA. Experiments on photoinduced absorption
[2, 3], conductivity [4], and electron-spin resonance [5] have been carried out to study the
nature of elementary excitations in TPA at resonant absorption. From a theoretical point of
view these excitations may be solitons [6], polarons [7] or breathers [8]. The dynamical
processes in optical excitation are, however, not well understood either experimentally or
theoretically, despite several fs time-resolved studies having been performed [3, 9, 10]. Our
goal was therefore to investigate numerically the primary optical absorption process in TPA.

We use the well-known Su–Schrieffer–Heeger (SSH) model [6] for TPA, which assumes
independent tight-binding pz orbitals of the carbon forming a half-filled electronic band. The
transfer integrals depend linearly on the displacements of the monomers (the CH units in
TPA) from their equidistant positions, while the monomers form an elastic chain with spring
constantK representing theσ -bonds. The displacements are assumed to obey equations of
motion which contain forces from the instantaneous electron distribution.

We have studied the dynamics of a finite chain over a time span of 1500 fs under the
influence of a strong electromagnetic light pulse of some fs duration numerically and have
observed the excitation of soliton pairs and breathers by the electric field of the laser pulse
starting from the ground state for the first time. The dynamics of the SSH model has been
investigated since the early days of the model [11, 12]. In contrast to what is done in our
present contribution, however, Su and Schrieffer [11] started from an excited electron–hole
pair and applied adiabatic dynamics. In their investigation the electron–hole pair develops
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after some tens of fs into a separating soliton pair which eventually is reflected at the chain
ends. Since the creation energy of a soliton pair is less than the energy of an electron–hole
pair the excess energy excites oscillations of the monomers with a frequency somewhat
lower than the optical phonon frequency—so-called breathers [8].

Because of the electron–phonon coupling in TPA the optically excited electrons strongly
distort the bond-length alternation already, during the absorption process. An electron–hole
pair on a dimerized chain, therefore, seems to be rather artificial and not an adequate initial
condition. We, therefore, in contrast to most earlier investigators, start with the ground state
for a uniform chain instead of an already somehow excited state and excite the chain with
a short electromagnetic pump field with a Gaussian envelope which is coupled to the SSH
model by a scalar potential in the dipole approximation. Apart from the pump pulse the
electronic Hamiltonian depends on time through the monomer displacements.

In order to appropriately excite the chain with an optical pump pulse it is important
to solve the time-dependent Schrödinger equation; this is done within the mean-field
approximation. This means that we actually calculate the changes in the occupation numbers
of the instantaneous eigenstates, in contrast to in the adiabatic dynamics of [11], where the
occupation is held fixed and the electronic wave functions are replaced by the time-dependent
instantaneous eigenfunctions. An approach similar to ours was used by Terai [13] to study
the motion of solitons in an odd-membered ring.

We have investigated the properties of this coupled electron–phonon system forN = 140
electrons of a TPA chain with 140 monomers and choose fixed boundary conditions for the
monomer positions. In particular we have calculated the time evolution of the staggered
monomer displacements (the order parameter), the electric charge density distribution, and
the instantaneous electronic eigenvalues, using an electromagnetic pulse of 30 fs length with
a mean photon energy of 2 eV. In order to properly excite solitons and breathers optically,
however, an important extension of the SSH model was effected. We have found that the
excitation of solitons by a pump pulse is facilitated if there exists some local perturbation
as a nucleation centre for the creation of a soliton pair somewhere at the chain. We have
successfully used two possibilities. First we introduced a small (10−8 to 10−3 eV) diagonal
element in the Hamiltonian simulating a slightly different monomer on-site energy at one
site near the centre of the chain. Second we used small (5× 10−17 m) random fluctuations
of all monomer positions without change of the total energy of the chain.

To obtain these localized excitations one has to apply rather high electric fields of some
108 V m−1. We have thus found three types of localized excitation of the chain which
remain stable for some 100 fs until they locally interact with each other as detailed below.

(1) Bound soliton pairs, which are similar to polaronic lattice distortions [14], moving
with velocities ranging from two to four times the velocity of sound. In contrast to polarons
they have among other different features a dipole moment oscillating with the difference
frequency of the corresponding pair of gap states. Charge separation in a substituted
polyacetylene was also found experimentally [10].

(2) Charged unbound soliton pairs which may repel each other, similar to those found
by Su and Schrieffer [11] who started from an excited electron–hole pair.

(3) Localized charge-neutral lattice oscillations which are moving with different
velocities along the chain lower than those of the solitons. They will be related to the
breathers discussed by Bishopet al [8].

Despite the fact that electron–electron interaction will play an important role we
restrict ourselves in this paper to the simple SSH model as a first attempt to investigate
soliton dynamics starting from the dimerized ground state. While taking electron–electron
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interaction within the unrestricted Hartree–Fock approximation into account by using a
Pariser–Parr–Pople model (see [15]) introduces no important difficulties [16], a treatment
beyond the Hartree–Fock method still awaits further work.

This contribution is organized as follows. In section 2 we introduce the model we
have used. Section 3 contains our results obtained using a fixed nucleation centre at some
monomer near the centre of the chain. In section 4 we discuss the bound soliton pairs within
the continuum model [17] for TPA. In section 5 small random fluctuations of the monomer
positions are introduced which conserve the energy of the chain. Again localized distortions
are excited after the pump pulse and are very similar to those discussed in section 3. We
conclude in section 6.

2. The model

In our calculations we apply the SSH Hamiltonian [6]

H = He + Hp + HE(t)

where

He =
∑
nn′s

c†
nshnn′cn′s =

∑
nn′s

c†
ns

(
t0
nn′ +

∑
l

βl
nn′ul

)
cn′s

is the Hamiltonian of the independentπ -electrons with the tight-binding hopping integrals

t0
nn′ = −t0(δn,n′+1 + δn,n′−1)

and the linear electron–phonon coupling

βl
nn′=α(δl,n − δl,n′)(δn,n′+1 − δn,n′−1).

We describe the harmonic lattice by

Hp =
∑

l

p2
l

2Ml

+ 1

2

∑
ll′

ulDll′ul′

with Dll′ = K
(
2δl,l′ − δl,l′+1 − δl,l′−1

)
and the dipole interaction with the electric field

E(t) by

HE(t) = e
∑
ns

xn(c†
nscns − 1

2)E(t).

Herexn = na + un are the monomer positions.
The displacementsul(t) = 〈ul〉 are calculated from their equation of motion

Mlül(t) = −
∑
nn′

βl
nn′ρn′n(t) −

∑
l′

Dll′ul′(t) − eE(t)(ρll(t) − 1)

with initial values given by∂Etot/∂ul = 0 (the dimerized ground state). The density matrix

ρnn′(t) =
∑

s

〈c†
n′scns〉 = 2

∑
k

ψnk(t) fk ψ∗
n′k(t)

is determined by the occupationfk of the wave functionsψnk(t) given as solutions of the
time-dependent Schrödinger equation

ih̄ψ̇nk(t) =
∑
n′

hnn′(t)ψn′k(t). (1)
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Hereul in hnn′ was replaced by its expectation value〈ul〉 which corresponds to the mean-
field approximation∑

s

〈c†
n′sulcns〉 ≈ ρnn′(t)ul(t).

The statesψnk(t) may be written in terms of the instantaneous eigenfunctionsϕnk(t) of
hnn′(t):

ψnk(t) =
∑
k′

ϕnk′(t)αk′k(t) (2)

which are determined by∑
n′

hnn′(t)ϕn′k(t) = εk(t)ϕnk(t).

Thereforeαk′k(t) obeys

ih̄α̇k′k(t) = εk′(t)αk′k(t) − ih̄
∑
n k′′

ϕ∗
nk′(t)ϕ̇nk′′(t)αk′′k(t). (3)

If we start with the charge-neutral half-filled chain we chooseαk′k(0) = δkk′ andfk as the
Fermi distribution function atT = 0 K.

In the adiabatic dynamics [11] theαk′k are approximated with constantsδkk′ and equation
(1) need not be solved.

For TPA we adopt the parameters often used [6]:α = 4.1 eV Å−1, K = 21 eV Å−2,
t0 = 2.5 eV, andM = 3114h̄2 eV−1 Å−2, and hence the electron–phonon coupling constant
λ = 4α2/(πt0K) = 0.408, the Peierls gap 210 = 1.35 eV, and the bare and renormalized
optical phonon frequencies areω0 = 2π/(25.2 fs) andωr = 2π/(39.4 fs), respectively.

3. The electronic on-site nucleation centre

In order to find spatially localized excitations like solitons and breathers within the dipole
approximation for the electric field it is important to introduce nucleation centres. One
possible way is to modify the Hamiltonian by introducing a small defect at some site. We
have used a finite constant diagonal elementh70,70 = σ of the Hamiltonian at the 70th site
of our 140-monomer chain. We start our simulation with the ground state of an electrically
neutral half-filled TPA chain with an even number of monomers andαk′k(0) = δkk′ . It
shows a Peierls gap [18] in the electronic energy spectrum and alternating bond lengths. At
tE = 150 fs we apply a strong resonant laser pulse:

E(t) = E0 exp

(
−

(
t − tE

T

)2 )
cos(ωt)

with T = 30 fs. We have variedσ , E0 andω and have found a strong dependence of the
evolutionary details from the values of these parameters, i.e. our model shows deterministic
chaos as may be expected. Nevertheless there are several features in common (‘scenarios’)
which will be discussed now for one characteristic example. We choose a rather strong
resonant laser pulse withE0 = 2.59 × 108 V m−1 and h̄ω = 2.0 eV and a diagonal
disturbance of the Hamiltonian ofσ = 1 meV.

We first discuss our results in terms of the evolution of the order parameter (figure 1)

rn(t) = −1

4
(−1)n(2un(t) − un−1(t) − un+1(t))
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Figure 1. The order parameterrn(t) in the case of a diagonal disturbanceσ = −1 meV of the
Hamiltonian and a maximum electric fieldE0 = 2.59×108 V m−1 at tE = 150 fs. The shading
ranges from a maximum (8.6 × 10−10 m) to a minimum (−8.0 × 10−10 m).

and the smoothed total charge density (figure 2)

%n(t) = 1

4
(2ρn(t) + ρn−1(t) + ρn+1(t))

with

ρn(t) = e

a

(
1 − 2

N/2∑
k=1

| ψnk(t) |2
)

.

High-frequency components of the charge density are suppressed by averaging over 1 fs.
In our numerical simulations we have found delocalized lattice vibrations, breathers

and bound and free soliton pairs, which are discussed in detail below. Most interesting
are bound soliton pairs found here for the first time. Soliton pairs show up in the plot of
the order parameter (figure 1) as dark regions where the order parameter has changed sign.
The bound soliton pairs apparently move with velocities ranging from two to four times the
velocity of sound. The distance between the solitons of the bound pair may take different
values.

Looking at the time evolution of the order parameter (figure 1) and the charge density
(figure 2) of the chain we see that up to 120 fs (before the pump pulse) the chain remains in
its dimerized ground state. In the range from 120 fs to 220 fs the vibrational pattern is due
to electronic transitions from states near−h̄ω/2 to states near ¯hω/2 since despite the limited
chain length of 140 monomers thek-selection rule is rather well satisfied. As is clearly
seen from the density plot of the charge density (figure 2) at about 340 fs a bound soliton
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Figure 2. The charge density%n(t) for the same diagonal disturbance of the Hamiltonian as in
figure 1. The shading ranges from white (0.073e/a) to black (−0.079e/a).

pair develops. It is reflected at the right-hand boundary at 460 fs and exists up to 600 fs. It
is remarkable that the bound soliton pair has an oscillating dipole moment which gives the
largest contribution to the total dipole moment of the whole chain. We shall discuss these
features in section 4 with the continuum model and its soliton pair solution. Furthermore
figure 1 reveals a lot of localized lattice vibrations which are stable over some 100 fs, have
a width of typically 9a and a frequency ofωB ≈ 0.94ωr ≈ 2π/(45 fs). We may call them
breathers since they can be described by the analytic formula for breathers given by Horovitz
(see [12]). They move with much lower velocities than the solitons. There is no appreciable
charge found in the regions of localized or extended chain vibrations (cf. figure 2). The
strong breather which develops at about 340 fs together with the bound soliton pair moves
from the 54th to the 45th site and interacts at about 600 fs with the bound soliton pair where
an unbound soliton pair emerges very quickly. In the time evolution of the instantaneous
eigenvalues (figure 3) the soliton pair is represented by the highest eigenvalueε70 and the
strong breather by the oscillations of the eigenvalueε69 (cf. the discussion by Bishopet
al [8]). The scattering event at 600 fs clearly diminishes the oscillations ofε69 while the
highest eigenvalueε70 increases to form the unbound pair. Later on similar scattering events
between solitons and breathers lead to changes in the velocity of solitons, to transformations
between well separated soliton pairs and bound soliton pairs, and to changes in the velocity,
strength, frequency, and width of the breathers. At about 1200 fs a diverging unbound
soliton pair with a low polarization is formed.

The disturbance of the Hamiltonian can be chosen to be much smaller than 1 meV to
obtain optically excited soliton pairs. We have calculated the optical excitation of the chain
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by the same electric field for disturbances ofσ = 10−8 eV, σ = −10−7 eV, σ = 10−6 eV,
σ = −10−5 eV, andσ = 10−4 eV. In all cases we have found bound and well separated
soliton pairs up to 1.5 ps. Although in each of these cases the order parameter and the local
charge density have a different time evolution in detail, the general features discussed above
are the same. Furthermore we have switched on the diagonal perturbation of the Hamiltonian
at site 70 at different times after the pump pulse. In general localized excitations evolved
only after the nucleation centre was introduced. If we switched off the disturbance some
time after the pump pulse (e.g. at 400 fs) again a scenario of localized excitations was
found.

4. The soliton pair in the continuum model

We now discuss the bound soliton pair in the continuum model for TPA. The electronic
energy spectrum of the continuum Hamiltonian [17]

H = 2at0

(
−i

∂

∂x

)
σ1 − 1(x)σ2 (4)

with the gap function

1(x) = 10 − 2at0κ[tanhκ(x + x0) − tanhκ(x − x0)] (5)

for a soliton pair [7] consists of the valence and conduction bands and two gap states. The
soliton distance 2x0 and the soliton width 1/κ obey10 tanh 2κx0 = 2at0κ.

The total energy is minimized via the gap equation

1(x) = 2πat0λ
∑

k

fkϕ
†
k(x)σ2ϕk(x) + 2πat0λ(n− − n+)ϕ

†
−(x)σ2ϕ−(x) (6)

if the occupation numbers for one spin component arefk = 1, 0 for the valence and
conduction band states, respectively, andn± are arbitrary for the gap states, while the
energies±h̄ωp of the gap states fulfil

h̄ωp =
√

12
0 − (2at0κ)2 = 10 sin

πν

2
(7)

with ν = n− − n+ the occupation difference of the lower and the upper gap states.
We stress that although 2ν is an integer in thermodynamic equilibrium atT = 0 K,

equation (7) gives a stable, i.e. energy-minimizing, solution for any 0< ν < 1. It describes
a soliton pair whose distance 2x0 increases atν → 0. The gap levels±h̄ωp therefore play
the roles of anti-bonding and bonding states, respectively.

In the time-dependent continuum model the gap function1(x, t) obeys the equation of
motion

1̈(x, t)

ω2
0

+ 1(x, t) = 2πat0λ
∑

k

fkψ†
k(x, t)σ2ψk(x, t) (8)

while ψk(x, t) is a solution of the time-dependent Schrödinger equation

ih̄ψ̇k(x, t) =
[

2at0

(
−i

∂

∂x

)
σ1 − 1(x, t)σ2

]
ψk(x, t). (9)

In order to describe a bound soliton pair with an oscillating dipole moment such as was
found in our numerical simulations of the finite chain we derive an appropriate solution
of the coupled equations (8) and (9). We accept the only time dependence of the wave
functions to be given by the coefficientsαk′k(t) in equation (2). From equation (3) therefore
αk′k(t) = α0

k′kexp(−(i/h̄)εkt), which solves equation (9).
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Since our numerical calculations show that in the bound soliton pair regime the
coefficientsα0

k′k are approximately diagonal for the band states, we assumeα0
k′k = δkk′

for k 6= ±. Now the lower and upper gap states (k = ±) are of the forms

ψ−(x, t) = β−eiωptϕ−(x) − β+e−iωptϕ+(x)

ψ+(x, t) = β+eiωptϕ−(x) + β−e−iωptϕ+(x)

with β2
−+β2

+ = 1 if we assumeψnk(0) (and hence at any timet) to be a unitary wave function
matrix which according to the Pauli principle forms a Slater determinant as the many-particle
wave function of the independent electrons. Numerically the ‘occupation numbers’β2

± turn
out to be noninteger. They specify the contribution of the electrons to the lower- and
upper-gap eigenstates, respectively. Withn± = β2

± the right-hand sides of equation (8)
and equation (6) are now equal and the time-independent gap function equation (5) solves
equation (8). Note thatϕ†

+(x)σ2ϕ+(x) = −ϕ
†
−(x)σ2ϕ−(x) and ϕ

†
+(x)σ2ϕ−(x) ≡ 0.

n+ + n− = 1 guarantees charge neutrality with an integer number of electrons despite the
noninteger ‘occupations’n±.

The electronic dipole moment for this solution is

de(t) = 2e
∑

k

fk

∫
dx ψ†

k(x, t)xψk(x, t) + 4ex0<β−β+e−2iωpt .

Its last term shows oscillations with a frequency 2ωp corresponding to the energy difference
of the two soliton-pair gap states sinceψk(x, t) is a mixed state of the two (i.e.β± are both
different from 0). The first term vanishes because of the parity of the eigenfunctions.

Focusing our attention now on the bound soliton pair (figure 2) in the time interval
between about 400 and 600 fs we observe a dipole frequency of 2ωp = 2π/(17 fs) corres-
ponding to a gap state ¯hωp = 0.12 eV. In figure 3 we display the time evolution of the
instantaneous eigenstates. The mean energy of the highest instantaneous valence band state
shows good agreement withε− = −0.12 eV in the time range mentioned above. Since
from figure 3 an effective shrinking of the band gap is observed we assume an effective
gap parameter10 = 0.5 eV and find in the continuum model the width of the soliton pair
as 2x0 = 22a which again agrees with that in figure 2. Furthermore we have calculated
the time evolution of the occupation numbersn± of the instantaneous eigenstates. The
calculated occupation differenceν = 0.13 of thek = 70th and thek = 71st instantaneous
eigenstates of the chain which is approximately constant in the time interval 400–600 fs
is somewhat smaller than the value 0.15 from equation (7) in the continuum model. The
numerical value of the corresponding dipole moment 1.9 × 10−9e m is the same as in the
continuum model.

The considerations of the continuum model break down for separated solitons since the
influence of the excitations of the remaining chain may easily be stronger than the forces
which tend to form an isolated soliton pair.

5. Nucleation by small fluctuations

We have further used small chain fluctuations conserving total energy to create nucleation
centres. In the global minimum of the total energy, which is realized in the ground state, any
chain fluctuation gives rise to an increase of the total energy. Fluctuations without change
of the total energy are only possible if the chain is excited with respect to the ground state.
We, therefore, first excite the chain with fluctuationsδun(t) given by

δun(t) = wn(t) 1u0 − 1 6 wn(t) 6 +1
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Figure 4. The time-dependent order parameterrn(t) for small chain fluctuations with parameters
given in the text. The maximum value (white) and minimum value (black) are 8.3 × 10−10 m
and−7.6 × 10−10 m, respectively.

wherewn(t) is randomly distributed. Up to 1 fs at each time step the fluctuationsδun(t)

give an additional contribution to the monomer motion and distortion of the ground-state
order parameter.

After the chain has been excited, fluctuationsδun(t) with

δun(t) = wn(t) 1u − 1 6 wn(t) 6 +1

disturb the homogeneous dynamics of the chain at each time step, where now the total chain
energy is conserved. This has been realized by selection of random setswn(t), which lead
to an alternating integrated energy error in the range from−ε to +ε. Energy conservation
is well satisfied, if this error is small compared with the numerical energy error due to the
finite-time step size. This error is smaller than 10−5 eV within 1.5 ps at excitation energies
of only a few eV and a step size of1t = 0.025 fs. In contrast to in section 3, the positions
of the nucleation centres are now randomly distributed along the chain depending on the
start value of the random-number generator.

As an example of various calculations with different fluctuations and electric field
strengths we discuss the results obtained with the following numerical values. The
electric field of the laser pulse with frequency ¯hω = 2.0 eV achieves its maximum
E0 = 2.5 × 108 V m−1 at 150 fs. The fluctuation parameters are given by

1u0 = 5 × 10−20 m 1u = 5 × 10−17 m ε = 10−8 eV.

The density plot of the order parameterrn(t) in figure 4 shows a bound soliton pair
created at about 450 fs which moves to the left and is reflected from the chain edge at about
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Figure 5. The charge density%n(t) corresponding to figure 4.%n(t) ranges from−0.073e/a
(black) to 0.085e/a (white).

600 fs. The formation of a free soliton pair at about 680 fs is apparently connected with
the interaction of the bound soliton pair and one or two breathers. At about 800 fs again a
bound soliton pair is formed which lasts up to 1200 fs. In this region apart from oscillations
with the transition frequency between the two gap states as was discussed in section 4 the
soliton pair shows charge pulsations with a lower frequency which is best shown in the
charge density plot (figure 5) and the polarization (figure 6) of the chain. In figure 6 we
depict the smoothed polarization where the high frequencies corresponding to more than
1 eV have been eliminated and compare it with the instantaneous eigenenergy of the gap
state. Again there is good agreement with the parameters of the continuum model: the gap
state pulsates between 0.14 eV and 0.3 eV which corresponds tox0 = 10a and x0 = 7a

(again using an effective gap parameter of10 = 0.5 eV), which agrees with the soliton pair
width in figure 5. The oscillation frequency may be crudely deduced from the oscillations of
the polarization (figure 6) and agrees with the pulsating frequency of transition between the
gap states. An analytic description of these pulsations in the framework of the continuum
model is, however, still lacking.

6. Conclusions

The numerical calculations of the dynamics during and after optical excitation in TPA
presented in this paper show that for very small but finite disturbances of the chain
homogeneity, extended excitations are able to decay into spatially localized and self-confined
excitations like breathers and soliton pairs. Within some ps we observe the formation of
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Figure 6. A comparison of the smoothed polarization with the instantaneous gap state energy
(with parameters as in figure 4).

bound soliton pairs with higher occupation of the soliton bonding than of the anti-bonding
level. This new species of self-localized excitations due to electron–phonon coupling is
connected with a large chain polarization, whose frequency is determined by the energy
separation of the soliton bonding and anti-bonding levels. Collisions of solitons with
breathers lead to changes of the soliton and breather velocities along the chain and to
transformations of bound into well separated soliton pairs and vice versa.
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